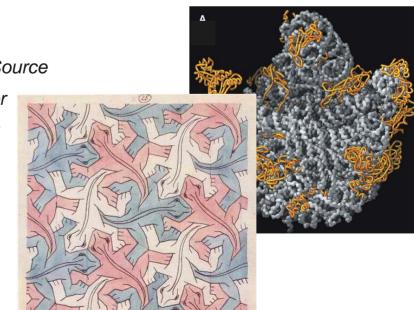


... for a brighter future


The Physics of the Blue

J. Murray Gibson Director, Advanced Photon Source Associate Laboratory Director

Argonne National Laboratory

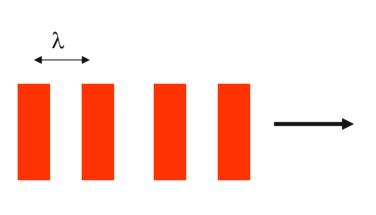
A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Symbiosis of art and science

Science and technology drives art

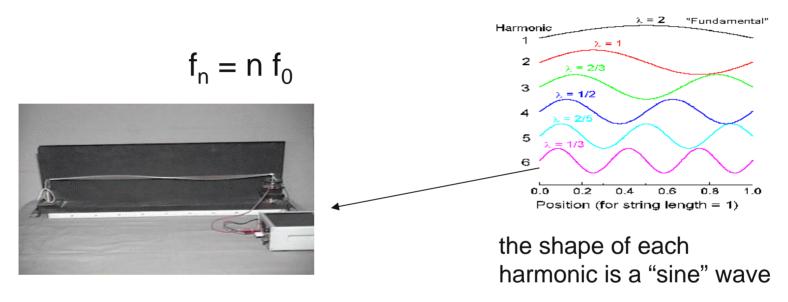
Art drives science and technology

$$\nabla^2 \phi = 0$$



Musical Pitch

The pitch of a note is determined only by the frequency of the sound (pressure) wave



high pressure is red

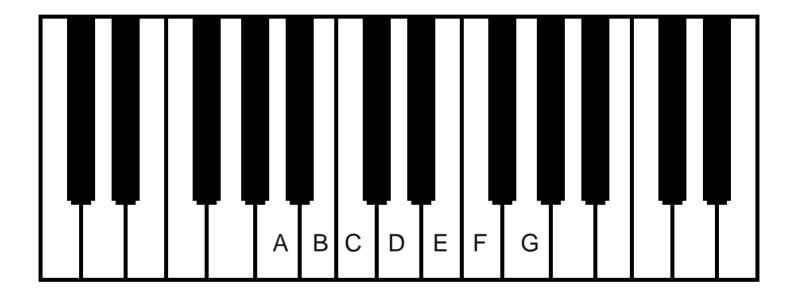
From a vibrating object, e.g. a string (guitar) or column of air (flute) Frequency (f) depends inversely on the wavelength (λ) of the vibration (and other factors such as string. tension) $f = c / \lambda$

Overtones of a string

For a vibrating string, all the harmonics (or overtones), are integer multiples of the fundamental frequency (pitch)

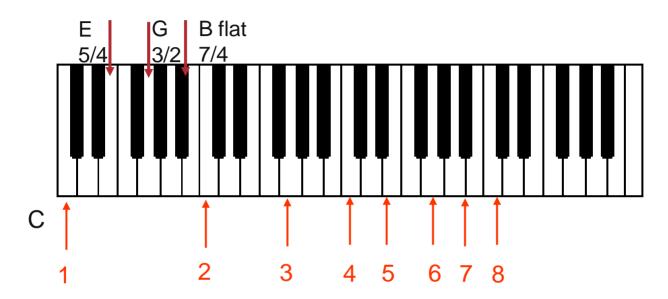
When you pluck the string you get a mixture of harmonics, but the amount of each depends on how you pluck it (timbre)

(harmonic or fourier analysis is the mathematical technique to extract the harmonics for the shape – very important in science and engineering)


Let's build a musical scale based on the harmonics...

the scale is to a musician as the palette is to an artist

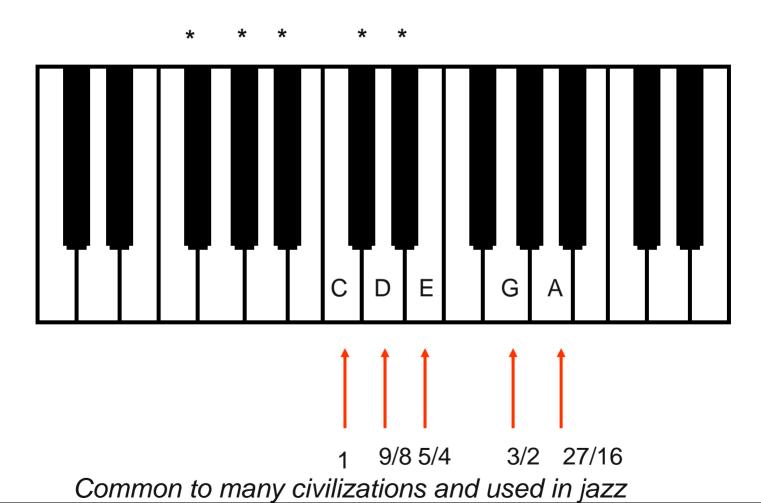
Familiarity with the keyboard



1 step = semitone

2 steps = whole tone

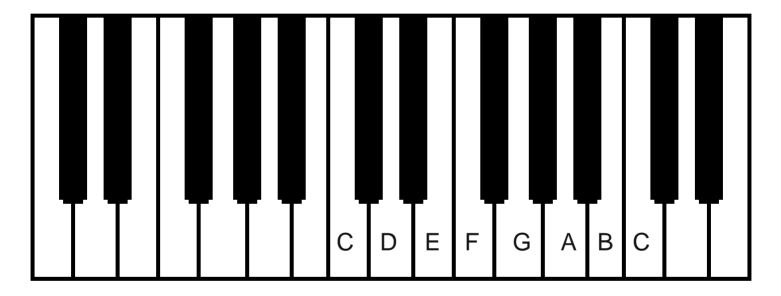
How to make a scale using notes with overlapping harmonics



Musical interval – two notes sounded simultaneously can sound good together (CONSONANT) Intervals are the foundations of musical harmony

If the ratio of the frequencies is a small integer fraction => harmonics overlap and the interval sounds good....pick notes on your scale for CONSONANCE

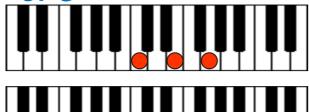
A simple scale - the pentatonic



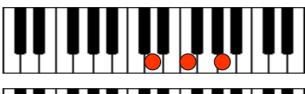
Natural (Just) Scale Pitch Ratios

Note	Pitch Ratio to C	Frequency of Upper Note based on C (Hz)
С	1	261.63
C#	25/24	272.54
D	9/8	294.33
D#	6/5	313.96
Е	5/4	327.04
F	4/3	348.83
F#	45/32	367.93
G	3/2	392.45
G#	8/5	418.61
А	5/3	436.06
A#	9/5	470.93
В	15/8	490.56
C'	2.0000	523.26

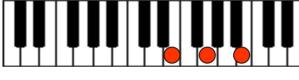
Diatonic Scale


"Tonic" is C here

Doh, Re, Mi, Fa, So, La, Ti, Doh....

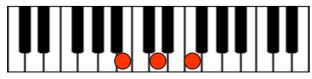


Simple harmony – three note chords: the triads in the key

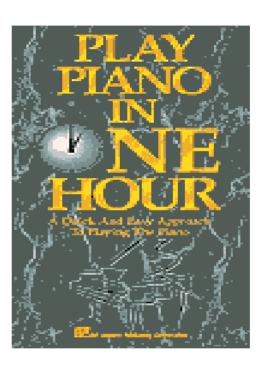

of C

DFA m3 P5 D Minor Triad

EGB m3 P5 E Minor Triad


FAG M3 P5 F Major Triad

GBD M3 P5 G Major Triad


ACE m3 P5 A Minor Triad

B D F m3 d5 B Diminished Triad

Three chords and you're a hit!

 A lot of folk music, blues etc. relies on chords C, F and G

Baroque Music

CANON IN D

Based only on diatonic chords in one key (D in this case)

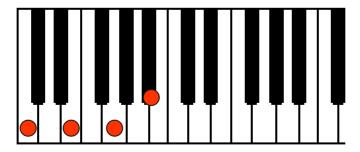
Equal temperament scale

Note	Frequency (Hz)	Difference from Just S	Scale (Hz)
С	261.63	0	
C#	277.18	4.64	Step (semitone - 2^1/12
D	293.66	-0.67	
D#	311.13	-2.83	
E	329.63	2.59	
F	349.23	0.4	
F#	369.99	2.06	
G	392.00	-0.45	
G#	415.30	-3.31	Dianafam
A	440.00	3.94	 Pianofort needs multiple strings to beats!
A#	466.16	-4.77	
В	493.88	3.32	
C'	523.25	0	

Step (semitone) = 2^1/12

Pianoforte needs multiple strings to hide beats!

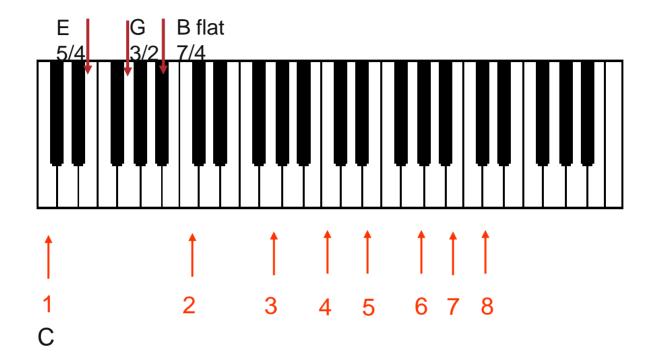
Mostly Mozart



From his Sonata in A Major

The "Dominant 7th"

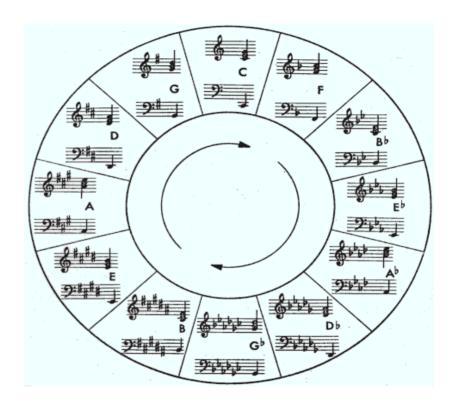
- The major triad PLUS the minor 7th interval
- E.g. B flat added to C-E-G (in the key of F)
- B flat is very close to the harmonic 7/4
 - Exact frequency 457.85 Hz,
 - B flat is 466.16 Hz
 - B is 493.88 Hz
 - Desperately wants to resolve to the tonic (F)



B flat is not in the diatonic scale for C, but it is for F

Also heading for the "blues"

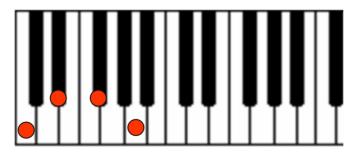
How to make a scale using notes with overlapping harmonics


Concept of intervals – two notes sounded simultaneously which sound good together, foundations of musical harmony

Ratios of frequencies are integers => harmonics overlap....

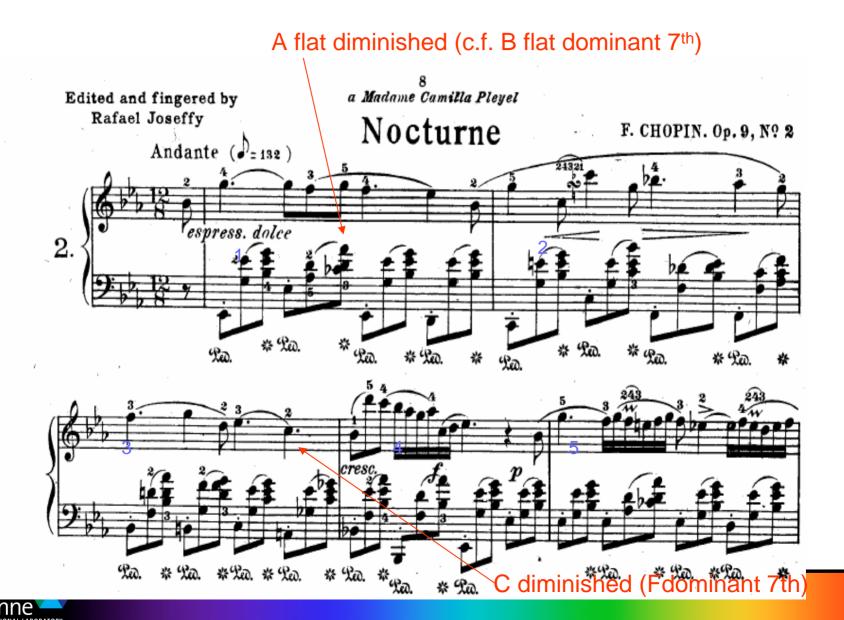
Circle of Fifths

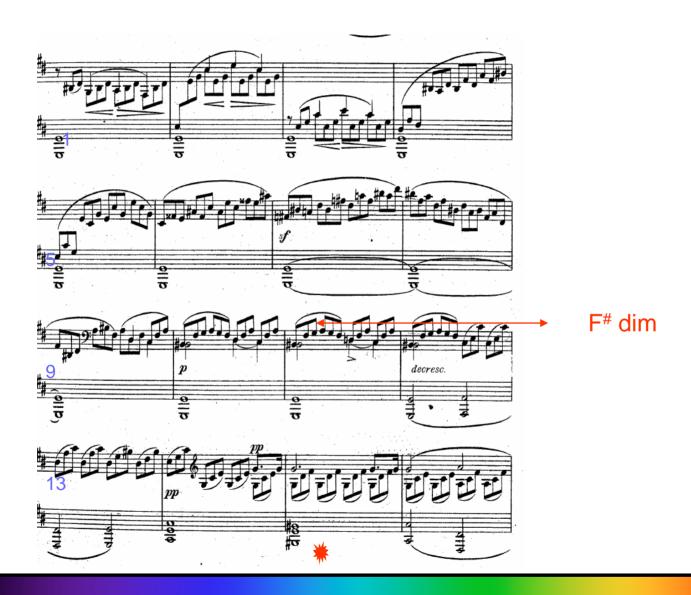
- Allows modulation and harmonic richness
 - based on dominant 7th
 - needs equal temperament
 - allows harmonic richness



Yesterday...

Diminished Chords


- A sound which is unusual
 - All intervals the same i.e. minor 3rds, 3 semitones (just scale ratio 6/5, equal temp -1%)
 - The diminished chord has no root
 - Ambiguous and intriguing
- An ability of modulate into new keys not limited by circle of fifths
 - And add chromatic notes
 - The Romantic Period was lubricated by diminished chords


C diminished

Romantic music...

Beethoven's "Moonlight" Sonata in C# Minor

"Blue" notes

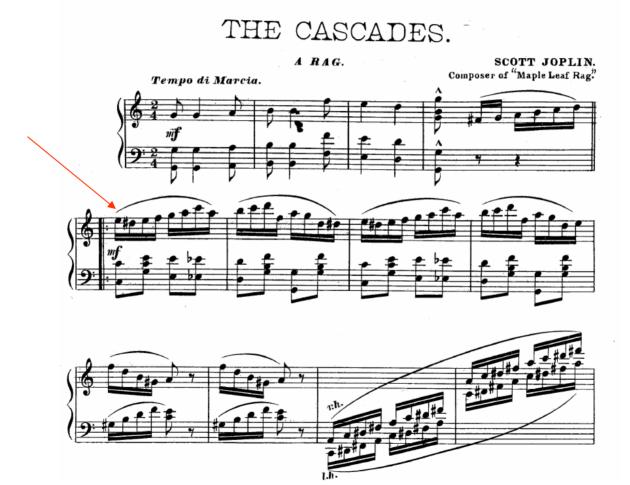
- Middle C = 261.83 Hz
- E flat = 311.13Hz
- Blue note = perfect harmony = 5/4 middle C = 327.29 Hz slightly flatter than E
- E = 329.63 Hz
- Can be played on wind instruments, or bent on a guitar or violin. "Crushed" on a piano
- 12 Bar Blues C F7 C C F7 F7 C C G7 F7 C C

Equal temperament scale

Note	Frequency (Hz)	Difference from Just S	Scale (Hz)
С	261.63	0	
C#	277.18	4.64	Step (semitone - 2^1/12
D	293.66	-0.67	
D#	311.13	-2.83	
E	329.63	2.59	
F	349.23	0.4	
F#	369.99	2.06	
G	392.00	-0.45	
G#	415.30	-3.31	Dianafam
A	440.00	3.94	 Pianofort needs multiple strings to beats!
A#	466.16	-4.77	
В	493.88	3.32	
C'	523.25	0	

Step (semitone) = 2^1/12

Pianoforte needs multiple strings to hide beats!



Crushed notes and the blues

Not quite ready for the blues

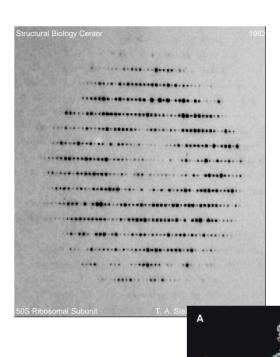
Ambiguities and Axioms

- Sophisticated harmonic rules (axioms) play on variation and ambiguity
- Once people learn them they enjoy the ambiguity and resolution
- Every now and then we need new rules to keep us excited (even though we resist!)

Music and what we do here at Argonne...

- Music and physics and mathematics have much in common
- Not just acoustics
 - Musician's palette based on physics
 - Consonance and dissonance
 - Both involved in pleasure of music
- Right and left brain connected?
 - Is aesthetics based on quantitative analysis?
- Music is excellent for illustrating physical principles
 - Quantum mechanics, nanotechnology, x-ray diffraction....

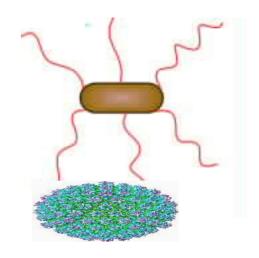
You are here...



The Advanced Photon Source (APS) at Argonne National Laboratory is the brightest source of x-rays in the Western hemisphere. Almost 3500 scientific users visit annually, experimenting in areas of science from medicine, to physics and engineering.

Spatial Harmonics

- Crystals are spatially periodic structures which exhibit integral harmonics
 - X-ray diffraction reveals amplitudes which gives structure inside unit cell


Unit-cell contents? (or instrument timbre?)

Nanotechnology

- Where chemistry, physics, materials science and biology meet
- A new way of making things from "the bottom-up" rather than the "top down"
- Also utilizes "quantum effects" in materials on a nano scale, which can be thought of as resonances in a musical context, but electron waves rather than sound waves
 - Manipulating materials on a nano scale allows you to tune these resonances

To learn more...

- "Measured Tones: The Interplay of Physics and Music", Ian Johnston, Institute of Physics (Philadelphia) 1989, ISBM 0-85274-236-3
- Harmony and Theory: A Comprehensive Source for All Musicians by Keith Wyatt and Carl Schroeder
- A Student's Guide to Fourier Transforms: With Applications in Physics and Engineering by <u>J. F. James</u> (Author) - for math and physics students
- Many web resources, on musical acoustics, fourier analysis, physics of musical instruments....

- This lecture will be on the web at <u>www.aps.anl.gov</u>
- Contact <u>imgibson@aps.anl.gov</u> with questions

